Ohio State University Factsheet

What Is Radioactive Material and How Does It Decay?

RER-20

Audeen W. Fentiman
Timothy A. Leet
Joyce E. Meredith

All materials are made of atoms. Radioactive atoms are unstable; that is, they have too much energy. When radioactive atoms release their extra energy, they are said to decay. All radioactive atoms decay. After releasing all their excess energy, the atoms become stable and are no longer radioactive. The time required for decay depends upon the type of atom. This fact sheet explains the process of radioactive decay.

The Atom

The explanation of radioactive decay begins with a description of the atom. Atoms are made up of three subatomic particles: protons, neutrons, and electrons. The protons and neutrons are packed together in the nucleus at the center of the atom (see Figure 1). The electrons orbit the nucleus. The number of protons in the nucleus determines what material (element) the atom is. For example, if the nucleus contains 8 protons, the atom is oxygen. If the nucleus contains 17 protons, the atom is chlorine.


Figure 1. The Atom

Isotopes

While all atoms of the same element have the same number of protons, it is possible for atoms of one element to have different numbers of neutrons. Atoms of the same element with different numbers of neutrons are called isotopes. For example, all atoms of the element carbon have 6 protons, but while most carbon atoms have 6 neutrons, some have 7 or 8. Isotopes are named by giving the name of the element followed by the sum of the neutrons and protons in the isotope's nucleus. So a carbon atom with 6 protons and 6 neutrons in its nucleus is called Carbon-12. The carbon atom with 8 neutrons is called Carbon-14. It is interesting to note that Carbon-14 is radioactive while Carbon-12 and Carbon-13 are stable.

Radioactive Decay

When the nucleus of a radioactive isotope gives up its extra energy, that energy is called ionizing radiation. Ionizing radiation may take the form of alpha particles, beta particles, or gamma rays. Ionizing radiation is of concern because it may cause adverse health effects. The process of emitting the radiation is called radioactive decay.

Decay Chain

When the nucleus of a radioactive isotope decays, emitting ionizing radiation, the nucleus is altered. It is transformed into another isotope which in many cases is a different element. This new isotope may be stable or unstable. If it is stable, the new isotope is not radioactive. If it is unstable, it also will decay, transforming its nucleus and emitting more ionizing radiation. Several decays may be required before a stable isotope is produced. This sequence is known as a decay chain (see Figure 2).


Figure 2. Decay Chain for an Isotope of Sulfur

Decay chains of radioactive isotopes have been studied extensively. Scientists know exactly how many decays are required for each radioactive isotope to become stable. In addition, they know how much energy will be released with each decay. The next section discusses how much time is required for a radioactive isotope to decay.

Half-Life

It is not possible to predict exactly when a single radioactive atom will decay. However, the time required for half of a large number of identical radioactive atoms to decay has been determined. This time is called the half-life.

Suppose, for example, a large number of atoms of a radioactive isotope with a half-life of three hours were put in a box. After three hours, one-half of those radioactive atoms would remain. The other half would have been transformed to a different isotope. After three more hours, only half of the remaining radioactive atoms (one quarter of the initial number) would still be unchanged. The concept of half-life is illustrated in Figure 3.


Figure 3. Radioactive Decay of Atoms with a Half-Life of Three Hours

After ten half-lives, only 0.1 percent of the original radioactive atoms remain. This is true for any radioactive material.

The half-life can vary substantially from one isotope to another, ranging from a fraction of a second to billions of years. For example, Iodine-131, an isotope with important medical applications, has a half-life of 8.04 days. Cesium-137, one radioactive isotope found in spent nuclear fuel, has a half-life of 30.17 years. Carbon-14, the isotope used in carbon dating, has a half-life of 5730 years.

For More Information

If you would like to read more about radioactive material and its decay, some of the references and other fact sheets listed below may be helpful.

American Chemical Society, Chemistry in the Community, 2nd edition, Kendall/Hunt Publishing Company, 1988. (Fifth section of the book, "Nuclear Chemistry in Our World", discusses radiation)

Raymond L. Murray, Understanding Radioactive Waste, Battelle Press, 1989.

Other Fact Sheets:

RER-21 What is ionizing radiation?
RER-22 What are sources of ionizing radiation?
RER-24 What are the health effects of ionizing radiation?
RER-26 How are people protected from ionizing radiation?


All educational programs conducted by Ohio State University Extension are available to clientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, gender, age, disability or Vietnam-era veteran status.

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Keith L. Smith, Director, Ohio State University Extension.

TDD # 1 (800) 589-8292 (Ohio only) or (614) 292-1868



| Ohioline | Index |